EVALUACIÓN EN CAMPO DE NUEVOS FORMULADOS DE BACILLUS THURINGIENSIS SUBSP. ISRAELENSIS Y POLÍMEROS NATURALES CONTRA LARVAS DE MOSQUITOS

MARÍA GUADALUPE MALDONADO BLANCO¹, ERIK IVÁN MELÉNDEZ LÓPEZ¹, LUIS JESÚS GALÁN WONG¹, HUMBERTO QUIROZ MARTÍNEZ², ARIADNA RODRÍGUEZ CASTRO³ Y MYRIAM ELÍAS SANTOS¹.

¹ Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán s/n Cd. Universitaria, San Nicolás de los Garza, N. L. C.P. 66450. A. P. 414 y 2790. Correo electrónico: María Guadalupé Maldonado Blanco: mgpemald@hotmail.com, mgmb_uanl@yahoo.com.mx Erik Iván Meléndez López: pemenition37@hotmail.com Luis Jesús Galán Wong: lgalanw@mail.uanl.mx Myriam Elías Santos: melias57@hotmail.com

² Laboratorio de Entomología, Depto. de Zoología de Invertebrados, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán s/n Cd. Universitaria, San Nicolás de los Garza, N. L. C, P, 66450. A. P. 105-F. Correo electrónico: Humberto Quiroz Martinez: hqm_uanl@yahoo.com Ariadna Rodríguez Castro: ariadna28@hotmail.com

EVALUACIÓN EN CAMPO DE NUEVOS FORMULADOS DE BACILLUS THURINGIENSIS SUBSP. ISRAELENSIS Y POLÍMEROS NATURALES CONTRA LARVAS DE MOSQUITOS

RESUMEN: El polvo técnico formado por esporas y cristales de la cepa 225 de Bacillus thuringiensis subsp. israelensis fue producido por fermentación y evaluado para determinar su concentración letal media (CL₉₀) contra larvas de Culex quinquefasciatus Say. Se prepararon después dos formulaciones con este polvo técnico incluyendo otros ingredientes de formulación tales como pectina y goma acacia, los cuales se evaluaron en campo, y se compararon con otros tratamientos involucrando el polvo técnico sin formular y un control no tratado, usando contenedores plásticos de 200 litros de capacidad colonizados previamente. Se determinaron las densidades larvales y pupales de los mosquitos colonizantes durante 28 días postratamiento. Los resultados mostraron reducciones larvales significativas de las especies colonizantes, logradas con las dos formulaciones de Bti preparadas, comparadas con el control por al menos 27 días mientras que el ingrediente activo sin formular mostró reducciones larvales menores a las presentadas por las formulaciones Bti-polímeros preparadas.

PALABRAS CLAVE: Bacillus thuringiensis Subsp. israelensis, Culex quinquefasciatus, Aedes aegypti, Culex sp, control de mosquitos, formulaciones

ABSTRACT. A technical powder of Bacillus thuringiensis subsp. israelensis 225 strain was produced by fermentation, and then was evaluated for LC₉₀ value against Culex quinquefasciatus Say larvae. Two Bti-formulations including pectin and acacia gum were prepared using this technical powder and evaluated in field against mosquito larvae colonized in 200-l plastic containers, compared with a treatment involving the unformulated active ingredient and untreated control. Total larval and pupal population densities were assessed during 28 days posttreatment. The results showed significant larval reductions compared with the control for 27 days at last obtained with the Bti-formulations. In contrast, the treatment with unformulated active ingredient showed less larval reductions than the Bti-formulations prepared.
INTRODUCCION

Bacillus thuringiensis subsp. *israelensis* (Bti), ha sido uno de los microorganismos más usados para el control de las poblaciones de mosquitos y moscas negras debido a su alta eficacia, especificidad, seguridad ambiental, bajo riesgo de desarrollo de resistencia, producción a gran escala, facilidad de manejo y estabilidad de almacenamiento (Ali et al. 1994, Su & Mulla 1999). A pesar de estas cualidades, las formulaciones a base de esta bacteria tienen algunas desventajas, tales como la sedimentación rápida de la toxina en el medio ambiente acuático donde se aplica y una rápida degradación de la toxina por la luz ultravioleta del sol (Yosten et al. 1992, Pusztaï et al. 1991).

Una amplia variedad de formulaciones de Bti se han usado a lo largo de más de dos décadas, como líquidos, polvos, gránulos, pellet, micropellet y otros, tales como los recientemente desarrollados GDA (gránulos dispersibles en agua) por Valent Biosciences (Ali et al., 1994, Su & Mulla, 1999).

Se han reportado algunas formulaciones basadas primordialmente en el uso de biopolímeros, como el alginato de sodio (Murat-Elcin, 1995), o bien polímeros sintéticos, como el polietileno (Margalit et al., 1984). Estos materiales podrían ser combinados con protectores solares, tales como melanina (Liu et al., 1993), para proteger la toxina de la radiación ultravioleta del sol y incrementar la actividad residual en campo.

En un estudio previo, se reportó que la preparación, almacenamiento y actividad residual en laboratorio de formulaciones Bti-polímeros, indujeron alta mortalidad en larvas de *Aedes aegypti* (Linnaeus, 1758), después de 14 días de posttratamiento (Maldonado-Blanco et al., 2002).

En este trabajo se describe la evaluación en campo de dos formulados granulares Bti-polímeros, así como la comparación con polvo técnico sin formular, contra larvas de *Culex quinquefasciatus* colonizadas en recipientes artificiales de 200 litros de capacidad.

MATERIAL Y MÉTODOS

Producción del polvo técnico de Bti (extracto de esporas y cristales). La cepa de Bti 225, obtenida de la Colección Internacional de Bacilos Entomopatógenos de la Facultad de Ciencias Biológicas (UANL) (donada por la Unité de Bactéries Entomopathogènes del Instituto Pasteur, París, Francia) y el medio de fermentación a base de subproductos (Maldonado-Blanco et al., 1998) fueron previamente seleccionados. El complejo de esporas y cristales de Bti se produjo por fermentación en un reactor tipo Bioflo III de 5 litros de capacidad (New Brunswick Scientific Co, N. J USA) a 30°C de temperatura, pH 7.0 y condiciones de agitación-aireación de 500 revoluciones /minuto (rpm): 0.6 volúmenes de aire/ volumen de medio/minuto (vvm) (Maldonado-Blanco et al., 2003).

Al final de la fermentación, después de 24 horas, las esporas y cristales se cosecharon de acuerdo a la metodología descrita por Dulmage et al. (1970) con el uso de lactosa y acetona. El producto final, o polvo técnico de Bti se evaluó contra larvas de cuarto estadío temprano de *Culex quinquefasciatus*, para determinar su actividad larvicida antes de ser formulado, de acuerdo al método de bioensayo reportado por de Barjac y Larget-Thiery (1984).

Evaluación del polvo técnico de Bti. Para esta prueba, se preparó una suspensión stock de 50 mg/10 ml del polvo técnico, se agregaron 10 perlas de vidrio y se agitó por 2 minutos. Después, se preparó una dilución 1:100 a partir de la suspensión anterior, posteriormente se tomaron diferentes cantidades, desde 15 hasta 210 microlitros, para preparar diluciones seriadas en vasos plásticos, desde 0.005 a 0.07 mg/l (entre 6-7 concentraciones). A cada vaso, conteniendo 150 ml de la dilución correspondiente, se colocó un grupo de 25 larvas de cuarto estadío temprano de *C. quinquefasciatus*, colectadas del campo, tres repeticiones por dosis y cuatro repeticiones para el control no tratado (solamente con agua destilada).
Los bioensayos se llevaron a cabo en un cuarto con una temperatura de 25 ± 3°C, 70-80% de humedad relativa y fotoperíodo de 14:10 h (luz: oscuridad). Los datos de mortalidad se registraron después de 24 h de tratados y los bioensayos se repitieron tres veces en diferentes días. Cuando la mortalidad en el control fue mayor al 5%, la prueba fue descartada.

La respuesta larval a las dosis expuestas se determinó mediante un programa computarizado de Probit (United States Applied and Environmental Health 1989) y de esta manera la concentración letal media (CL_{50}) se calculó.

Preparación de las formulaciones Bti-polímeros. Se prepararon dos formulaciones de acuerdo al procedimiento reportado por Maldonado-Blanco et al. (2002). La primera formulación, (FP) contiene pectina al 10% (grado alimenticio), y una segunda formulación, (FA) con goma acacia al 10% (Desarrollo de Especialidades Químicas, S.A. de C. V.). Se pesó el polímero (274 mg), se disolvió en 130 ml de agua, mediante agitación, a continuación se agregó el ingrediente activo al 10% p/p (274 mg) hasta homogenizarse y posteriormente el fotoprotector (verde de malaquita) al 1% p/p (Bohm y Friend, 1988). El material flotante (corcho) se molió y se pasó a través de un tamiz No. 10 (U. S. Standard Sieve Series, Dual Manufacturing Co. Chicago ILL) y se agregó a las formulaciones, las cuales se secaron a temperatura de 25 ± 3°C y/o mediante aire filtrado durante 4 días.

Prueba en campo. Esta fase se llevó a cabo en uno de los jardines, con poca vegetación, con períodos alternos de sol y sombra, dentro de las instalaciones de la Universidad de Nuevo León, y antes de iniciar las pruebas, se llenaron contenedores de plástico con 200 l de agua, y se expusieron a la oviposición de las hembras de poblaciones naturales de mosquitos.

El estudio consistió de un diseño de bloques al azar con cuatro tratamientos y tres repeticiones por tratamiento. Estos tratamientos fueron aplicados como sigue: a) formulado Bti-pectina (FP), b) formulado Bti-goma acacia (FA), c) Ingrediente activo (polvo técnico sin formular) (IA) y d) control no tratado. Todos los tratamientos se aplicaron a la dosis 13.7 mg/l, una sola vez.

El número de larvas vivas fueron registradas a los días 0, 1, 2, 3, 7, 14, 21 y 28 después de aplicados los tratamientos; para ello se tomaron 10 muestras de 350 ml de agua de cada tratamiento, mediante un calador de plástico. El número de insectos sobrevivientes colectados fueron registrados e identificados de acuerdo al criterio descrito por Darsie and Ward (1981), agrupados en dos categorías: larvas totales y pupas totales. El promedio de larvas y pupas sobrevivientes en el control y tratamientos fueron comparados en cada día de muestreo mediante análisis de varianza de un factor y se determinaron diferencias mediante la prueba de diferencia mínima significativa al nivel P = 0.05. Durante el período de prueba, el pH del agua de los contenedores fue registrado con un potenciómetro Beckman y la temperatura ambiental y precipitación pluvial se tomaron de la estación meteorológica de la Comisión Nacional del Agua. (CNA).

RESULTADOS
Actividad tóxica del polvo técnico de Bti. El polvo técnico de la cepa 225 de Bti obtenido en el fermentador y evaluado contra larvas de *Culex quiquefasciatus* de 4º. estadio temprano se muestra en el Cuadro 1. La CL_{50} que se determinó fue 0.066 ± 0.0014 mg/l.

Prueba en campo. En los primeros dos días postaplicación, los formulados FP (pectina 10%) y FA (goma acacia 10%) ocasionaron una alta reducción de larvas totales de los dos géneros de mosquitos encontrados (*Aedes aegypti* y *Culex sp*), con reducciones del orden de 92-94%, mientras que el ingrediente activo sin formular (Polvo Técnico de Bti) también redujo significativamente la población de mosquitos en relación al control. Para el tercer
Evaluación de nuevos formulados de Bti

Cuadro 1.

Resultados del Análisis Probit de cuatro bioensayos realizados con el polvo técnico de Bti (Ingrediente activo sin formular) contra larvas de Culex quinquefasciatus

<table>
<thead>
<tr>
<th>Repetición</th>
<th>Número total de larvas(^a)</th>
<th>Pendiente ± Desviación Estándar</th>
<th>CL(_{50}) (mg/l)</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>3.28 ± 0.6</td>
<td>0.06570</td>
<td>2.97</td>
</tr>
<tr>
<td>2</td>
<td>175</td>
<td>2.92 ± 0.53</td>
<td>0.06567</td>
<td>5.24</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>3.23 ± 0.40</td>
<td>0.06625</td>
<td>10.09</td>
</tr>
<tr>
<td>4</td>
<td>175</td>
<td>3.03 ± 0.54</td>
<td>0.06807</td>
<td>3.89</td>
</tr>
</tbody>
</table>

\(^a\) Número total de larvas de Culex quinquefasciatus de 40. estadio temprano probadas, usando 25 o 75 larvas por dosis, por seis o siete concentraciones por bioensayo y 25 o 75 larvas como control no tratado.

día postaplicación, ambas formulaciones probadas, FP y FA, presentaron reducciones casi del 100%, en tanto el ingrediente activo sin formular presentó reducción significativamente menor a las formulaciones probadas.

Para el día 7 postratamiento, el formulado FP (pectina) mostró la reducción mayor del número de larvas totales, en tanto el formulado con goma acacia (FA) solo presentó una diferencia parcial con respecto al control no tratado; el ingrediente activo sin formular no mostró ninguna reducción de las larvas totales.

En el siguiente día de muestreo (14) tanto los formulados preparados como el ingrediente activo sin formular mostraron el mismo nivel de reducción, mientras que para el día 21 postratamiento, el nivel de reducción larval mostrado por los formulados fue significativamente mayor al presentado por el ingrediente activo sin formular. Por último para el día 28 postratamiento, no observamos ninguna reducción en el número de larvas en los contenedores tratados, en relación al control (Fig. 1).

En relación a la población pupal observada, el formulado FP (pectina) fue el más efectivo para reducir el número de pupas totales a cero hasta antes del día 28 postratamiento, mientras que la formulación FA redujo a cero los números promedio de pupas/calada hasta el día 7 postratamiento, manteniendo los valores promedio alrededor de 0.9 pupas/calada a lo largo del experimento (Fig. 2).

Como conclusión, el ingrediente activo sin formular mostró reducciones significativas en la población larval únicamente para los días 1-3 postratamiento, mientras que las dos formulaciones Bti-polímeros preparadas tuvieron efecto significativo para reducir la población larval hasta antes del día 28 postratamiento. El formulado FP mostró mayor nivel de control que el mostrado por el formulado FA, solo en algunos días de muestreo, aunque en general no fue significativamente diferente.

Durante el período de prueba, los valores de temperatura mínima y máxima fueron 22°C y 39.5°C con un valor promedio de 34.6°C, mientras que el pH del agua de los contenedores varió de 7.3-8.3, en tanto la precipitación pluvial osciló de 0-10 mm (Fig. 3).

DISCUSSION

El valor obtenido para la CL\(_{50}\) de 0.066 mg/l en promedio resultó más alto que aquel presentado en otros reportes, como el de Su & Mulla (1999) de 0.014 y 0.024 mg/l para polvo técnico de Bti y formulaciones de gránulos dispersibles en agua, respectivamente, producidos por Laboratorios Abbott; este hecho indicó que en las condiciones usadas y con la cepa de Bti que usamos, el producto que evaluamos fue de menor actividad biológica que aquellos.
FIGURA 1. Población de larvas de Aedes aegypti y Culex sp. en contenedores de 200 l tratados con formulaciones Bti-polímeros y Polvo técnico sin formular a la dosis 13.7 mg/l. Letras diferentes en un día de muestreo dado indican diferencias significativas entre control y tratamientos. ANOVA, DMS P= 0.05.

FIGURA 2. Población total de pupas de Aedes aegypti y Culex sp. en contenedores de 200 litros tratados con formulaciones de Bti-polímeros y Polvo técnico sin formular a la dosis 13.7 mg/l. Letras diferentes en un día de muestreo dado indican diferencias significativas entre control y tratamientos. ANOVA, DMS P= 0.05.
Por otra parte, en la prueba de campo, se observó que las formulaciones Bti-pectina y Bti-goma acacia ocasionaron significativas reducciones larvales durante los primeros tres días posttratamiento, esto fue más evidente en el tercer día posttratamiento, cuando las formulaciones Bti-polímeros registraron una diferencia significativa en relación al polvo técnico sin formular. En el séptimo día posttratamiento se registraron de nuevo estas diferencias, mostrando mayores reducciones larvales las formulaciones Bti-polímeros que el polvo técnico sin formular, aunque de las dos formulaciones mostró evidencia de ser más efectiva la formulación Bti-pectina, de acuerdo al nivel de reducción de la población observada en el séptimo día posttratamiento y la reducción de pupas que prevaleció a cero hasta el día 21 posttratamiento. En relación a esto, el nivel de actividad tóxica residual mostrada por las formulaciones Bti-polímeros de más de 21 días posttratamiento, fue mayor a la registrada por las formulaciones de Abbott probadas por Ali et al. (1994), quienes observaron 75% de mortalidad larval de Ochlerotatus taeniorhynchus hasta por 9 días posttratamiento, mientras que Su & Mulla (1999) obtuvieron control de mosquitos Culex de varias especies hasta por 7-12 días posttratamiento, usando las formulaciones de gránulos dispersibles en agua (Abbott).

De esta manera, las formulaciones Bti-polímeros, con pectina o goma acacia, tuvieron efecto significativo para reducir la población larval de mosquitos hasta antes del día 28 posttratamiento.

AGRADECIMIENTOS
Al programa PAICYT de la UANL, quien proporcionó financiamiento parcial para este trabajo a través del proyecto CN-906-04.
LITERATURA CITADA

