La mosca Mexicana de la fruta, *Anastrepha ludens* (Loew, 1873) (Diptera: Tephritidae) es la principal plaga del mango y de varias especies de cítricos en México, en el Valle de Río Grande, Tx., USA, y Centroamérica (Aluja et al., 1996, Thomas y Loera-Gallardo, 1998). Actualmente en México se destina al cultivo de mango (*Mangifera indica* L., 1753) una superficie de 169,588 ha, con una producción
anual de 167,415 ton (SAGARPA, 2003), por lo que parte de la producción se exporta al mercado internacional.

Para que los frutos puedan ser movilizados de áreas infestadas a áreas libres de dicha plaga deben ser sometidos a algún tratamiento cuarentenario aprobado por el país comprador (Armstrong y Couey, 1989). Es por ello que los mangos que México exporta hacia los Estados Unidos son sujetos a regulaciones federales de cuarentena, mediante el tratamiento hidrotérmico, por la posible infestación con Anacampseros ludens (Mangan e Ingle, 1994; Thomas y Mangan, 1997; USDA, 1998). Los protocolos para tratamientos están basados sobre lo datos de mortalidad determinados en base a la tolerancia de alguna fase biológica (huevos y/o larvas) a las altas temperaturas (Mangan e Ingle, 1992; 1994; Thomas y Mangan, 1997; Mathias-Hernández et al., 1998; Miyazaki y Dohino, 2000; Thomas y Shellie, 2000). Las larvas de varias especies de moscas de la fruta (Diptera: Tephritidae) mueren cuando son sumergidas en agua caliente (46 °C) por 40 minutos (Mathias-Hernández et al., 1998; Jang et al., 1999).

En el caso de A. ludens, la sensibilidad a la temperatura fue determinada por Darby y Kapp (1934). Posteriormente se desarrolló y aprobó el tratamiento cuarentenario por inmersión en agua caliente (Sharp et al., 1989), estableciéndose que mangos Cv. "Tommy Atkins", "Keitt", "Kent" y "Haden" de 500 y 700 g de peso deben ser tratados por 75 y 90 minutos, respectivamente. En el caso de mangos Cv. "Ataulfo" y "Manila" de 375 y 570 g de peso deben ser tratados durante 65 y 75 minutos, respectivamente. En cada tratamiento la temperatura del agua no debe ser inferior a 46.1 °C y la pulpa de los frutos debe mantenerse al menos en 45 °C (USDA/SAGARPA, 2001). Posteriormente los frutos son enfriados al aire libre a una temperatura ambiente de 27 - 21 °C (Sharp et al., 1989). Por otro lado, las pruebas de tolerancia de los frutos han indicado que pueden soportar hasta 46.1 °C durante 110 minutos, sin que la calidad se vea afectada (Shellie y Mangan, 2001; Mangan y Shellie, 2003).

Se ha reportado que mangos Cv. “Francis” de 360 a 460 g de peso, infestados con Anacampseros suspensa (Loew, 1862) tratados hidrotérmicamente y posteriormente sometidos a un proceso de hidroenfriado (27 - 21°C) durante 30 minutos reduce el deterioro de la calidad de los frutos y retarda el proceso de maduración (Hallman y Sharp, 1990). Sin embargo, con el objeto de reducir los efectos indeseables que ocasionan (e.g. disminución de firmeza) (Osuna-García, 2002), durante el tratamiento, las altas temperaturas en la calidad de la fruta, se ha observado que mangos Cv. "Keitt" infestados con A. ludens, tratados hidrotérmicamente a 46.1 °C durante 65 ó 75 minutos, y posteriormente enfriados con agua no provocó 100% de mortalidad de larvas (Shellie y Mangan, 2000). Este hecho indica que existe la posibilidad de perder el mercado por el riesgo de introducir la plaga a regiones que están libres.

El objetivo de este trabajo fue determinar el tiempo requerido para inducir la mortalidad total de larvas de tercer instar de A. ludens en mangos infestados artificialmente y tratados por inmersión en agua caliente y posteriormente sometidos a un proceso de hidroenfriado en agua a temperatura de 24 °C. Además se describe la diferencia entre los tratamientos en equipo experimental y comercial así como su impacto en la aplicación de los tratamientos.

MATERIALES Y MÉTODOS
Esta investigación se realizó en dos etapas de acuerdo a lo establecido en los protocolos de importación de los países compradores de fruta (Takano, 1998; Thomas y Shellie, 2000).

1) Prueba de laboratorio realizada de agosto a septiembre del 2001 en el Laboratorio de Cuarentena del Kika de la Garza Subtropical Research Center (KG SRC), ubicado en Weslaco, Tx., USA.
2) Prueba confirmatoria a nivel comercial realizada de marzo a mayo del 2002 en la Empacadora de Mango AMEX, S. A. de C. V., ubicada en Tapachula, Chiapas, México. Los frutos utilizados durante todo el estudio fueron de 3/4 de madurez fisiológica o madurez comercial, calidad de exportación, en base a lo establecido por la norma EMEX (SAGARPA, 2005), la cual indica que la pulpa del fruto ha alcanzado el color amarillo en toda su área, sin partes blancas, la piel tiene color combinado de verde y amarillo, firmeza de 15.6 Kgf/cm² y 2.9 °Brix.

Establecimiento de la Cría de Anastrepha ludens

La prueba de laboratorio con mangos Cv. “Ataulfo” de 375 y 570 g, y “Keitt” de 500 y 700 g de peso se realizó con larvas de la segunda generación de la colonia de laboratorio establecida con 12,090 individuos silvestres obtenidos de mangos Cv. “Ataulfo” infestados, colectados durante los meses de junio y julio de 2001, en lugares aledaños al municipio de Tapachula, Chiapas, México. La cría se realizó de acuerdo a la metodología desarrollada por el laboratorio de moscas de la fruta en Kika de la Garza Subtropical Research Center, en Weslaco, Tx (Stevens, 1991).

La prueba confirmatoria se realizó con larvas de la segunda generación de una colonia de laboratorio criada en condiciones artificiales del laboratorio del Programa Moscamed-Moscafrut (SAGARPA-IICA) en Metapa de Domínguez, Chiapas (Hernández et al., 2003). La colonia fue establecida con 9,200 individuos silvestres obtenidos de mangos infestados, que fueron colectados durante los meses de enero y febrero del 2002 en la región del Soconusco, Chiapas.

Infestación de los Frutos

Por cada tratamiento 10 frutos fueron utilizados como testigo para determinar la supervivencia de las larvas. Para lograr la infestación artificial se perforaron dos veces los frutos hasta la semilla con un maneral con broca de 7/16 pulgadas (Reacciones Agrícolas e Industriales, Tapachula, Chiapas) (5 cm de profundidad, volumen = 5.65 cm³), colocando 25 larvas de tercer estadio en cada orificio, las cuales ocuparon en promedio 2.77 cm³. Posteriormente cada orificio fue cubierto con un tapón de pulpa de mango en forma de cilindro hecho con un sacabocados No. 8 (1.2 cm de diámetro por 0.5 cm de altura). Finalmente, los tapones fueron sellados con silicón.

Descripción del Equipor de Laboratorio

Para la prueba de laboratorio se utilizó un tanque para agua caliente de 700 litros (36 x 36 x 36 pulgadas, respectivamente), tanque de plástico (U.S. Plastic Co.) con bomba de 3/4 de HP con salida de 1.5 pulgadas de 22 Kw. Controlador Watlow series F4 1/4 DIN PID con SSR y de 0.1 °C de precisión. La variación de temperatura del agua del tanque fue de ±0.1 °C. Equipo para tanque de enfrío de 700 litros (U.S. Plastic Co.) con una bomba de 1/3 HP para recircular, enfriador tipo Caron HPC 5.5 con 100 pies cuadrados para intercambio de calor y precisión de menos de 1.0 °C (Watlow Electric Manufacturing Company, St. Louis, Missouri, USA).

Descripción del Equipo Comercial

Mientras que para la prueba confirmatoria se utilizó un tanque tipo Jacuzzi con capacidad para 2 canastas con 80 cajas de fruta cada una. Para el proceso de calentamiento se adaptó un equipo de “Gas Fired Hot Water Boiler Teledyne Laars serie 8890578” de 160psi de presión de agua caliente y una superficie para calentamiento de 7.06 pies
cuadrados. El tanque para enfrío fue de la misma capacidad que el tanque para hidrotérmico (Coper-
lametics, modelo 9RC1-1015-THC 505 B/M, 3HP,
serial 92070290, voltaje 200/220 50 Hz 42.8R.
L. A, 208 L.R.A.) (Construcciones y Servicios
Industriales, Tepic, Nayarit).

Aplicación del Tratamiento

La temperatura del agua y del centro del fruto fue
registrada cada cinco minutos durante todo el tra-
tamiento. Un sensor de temperatura fue insertado
hasta el centro del mango sobre la superficie de la
semilla en nueve mangos por repetición. Tres sen-
sores similares fueron utilizados para registrar la
temperatura de la parte baja, media y alta del tanque
de agua. Para el tratamiento en equipos comerciales
todos los sensores fueron del tipo termistor (20-50
°C, ± 0.1 °C) conectados a un modulo de teleme-
tría (9600 bifásico de 8 canales) con transmisor de
433.92 MHz de salida y RF = 10dBm y receptor
sensible de RF 113dBm con capacidad de
20 Khz (CONTECH, Guadalajara, Jalisco). Para el
caso de los tratamientos en laboratorio el registro
de temperatura fue con equipo “Data Taker 500
Series 2, Tipo Omega TT-T36-SLE con puntas
libres” (North American Oil Co.).

Para la prueba de laboratorio los frutos fueron
colocados en cajas de plástico de 60 x 40 x 21 cm
largo x ancho x alto, respectivamente) distribui-
dos de 25, 25 y 20 frutos en las cajas de abajo, en
medio y arriba, respectivamente. Las tres cajas
fueron acomodadas encima de otra, colocadas
a su vez sobre una canastilla metálica para ser
sumergidas en los tanques de agua caliente y fría.
Para la prueba confirmatoria se utilizaron cajas de
plástico de 55 x 32 x 37 cm (largo x ancho x alto,
respectivamente), las cuales se colocaron al azar en
la canastilla de los tanques, que tienen capacidad
da 160 cajas. Tanto en las pruebas de laboratorio
como en la fase confirmatoria, la temperatura del
tanque del agua caliente permaneció a 46.1 °C.
Cada tratamiento se inició después que la canastilla
con los frutos infestados fue sumergida al menos
10 cm por abajo de la superficie del agua y después
de un minuto de pretreatment para compensar
la temperatura una vez sumergidos los frutos, y
concluyó después de transcurridos los tiempos
establecidos para cada tamaño de fruto.

Durante el proceso de enfriamiento en agua, los
frutos permanecieron sumergidos en el agua a 21 °C
por 30 min, tiempo estimado para que la pulpa de la
fruta alcanzara una temperatura de 32.5 °C. La tem-
peratura de los frutos durante el tratamiento en agua
caliente y enfriado fue registrada y graficada.

La cantidad de frutos infestados artificialmente
tratados fue de 2000, 1580, 1480 y 1600 corres-
donentes al Cv. “Ataulfo” de 375 y 570 g de
peso, y del Cv. “Keitt” de 500 y 700 g de peso,
respectivamente.

Prueba de Laboratorio

En el plan de trabajo para el tratamiento y certifi-
cación de mangos mexicanos para exportar a los
Estados Unidos (USDA/SAGARPA, 2001) están
establecidos como tiempos de tratamiento en agua
caliente 75 y 90 minutos para mangos Cv. “Keitt”
de 500 y 700 g de peso, respectivamente. En el caso
de mangos Cv. “Ataulfo” con un peso máximo de 570 g de peso el tratamiento es de 75 minutos. Con
base al criterio del tamaño del fruto y el tiempo
de tratamiento que requieren, se diseñaron cuatro
experimentos, uno independiente del otro.

Para mango Cv. “Ataulfo” de 375 g de peso fue-
ron cuatro tratamientos (55, 65, 75 y 85 minutos).
En el caso del mango Cv. “Ataulfo” de 570 g de
peso se manejaron solamente dos tratamientos (65
y 75 minutos). Para los mangos Cv. “Keitt” de 500 g
de peso también se manejaron cuatro tratamientos
(65, 75, 85 y 95 minutos). Con mangos de este mis-
mo cultivar pero de 700 g de peso también fueron
cuatro tratamientos (80, 90, 100 y 110 minutos). El
estudio consistió en un diseño completamente alea-
torio para cada variedad de mango, peso del fruto
y tiempo de tratamiento en forma independiente.
Por cada tratamiento se realizaron dos réplicas. Cada réplica consistió de 35 frutos infestados con 50 larvas de tercer estadio (Mangan e Ingle, 1992 y 1994; Shellie y Mangan, 2000 y 2001). En todos los casos el tiempo de hidroenfriado fue de 30 minutos en agua cuya temperatura fue de 24±1 °C (USDA/SAGARPA, 2001). Simultáneamente, 20 frutos infestados (distribuidos en dos réplicas) con 50 larvas cada uno fueron manejados como testigo (sin tratamiento) por variable.

Veinticuatro horas después del tratamiento, los frutos fueron disecados para extraer y cuantificar las larvas muertas y vivas, en caso de haber sobrevivientes. En los tratamientos en donde hubo larvas vivas, éstas se colocaron en contenedores con vermiculita húmeda ubicados en un ambiente de 23 °C para promover la pupación. Siete días después, con un tamiz (malla 18) se separaron los puparios de la vermiculita y se registró la supervivencia, considerando solamente el número de pupas normales (no deformes, no alargadas, ni en forma de nariz) procedentes de los frutos tratados y del testigo (Thomas y Mangan, 1997; Shellie y Mangan, 2000 y 2001).

El peso promedio de frutos infestados por tratamiento, así como el número de pupas recuperadas por contenedor fue registrado y partir de ahí se estimó la cantidad de insectos sobrevivientes en los frutos de cada repetición.

Prueba Confirmatoria

De acuerdo a los resultados obtenidos en la prueba de laboratorio, se consideraron como tratamientos los tiempos de inmersión de 65, 75, 85 y 100 minutos para mangos Cv. “Ataulfo” de 375 y 570 g de peso, y para mangos Cv. “Keitt” de 500 y 700 g de peso. En este caso el estudio también consistió en un diseño completamente aleatorio para cada variedad de mango, peso del fruto y tiempo de tratamiento en forma independiente. Para cada tratamiento se realizaron cinco réplicas, cada una consistió de 400 frutos infestados con 50 larvas de tercer estadio. Simultáneamente, 50 frutos infestados (distribuidos en cinco réplicas) con 50 larvas cada uno fueron manejados como testigo (sin tratamiento) por variable evaluada. Para todos los tratamientos el tiempo de enfrío fue de 30 minutos por inmersión en agua a temperatura de 24±1 °C (USDA/SAGARPA, 2001).

Después de 24 h del tratamiento se procedió a disecar los frutos para extraer las larvas muertas y las que sobrevivieron, simultáneamente se hizo lo mismo con los frutos del testigo. Las larvas se colocarón por separado en recipientes de plástico que contenían vermiculita húmeda para promover la pupación a 26 ± 1 °C. Ocho días después, con un tamiz (malla 18) se separaron los puparios de la vermiculita y se cuantificó la cantidad de larvas muertas y los puparios formados (normales y deformes). Los puparios normales fueron retornados a sus respectivos recipientes y continuaron ahí hasta que transcurrió el tiempo requerido para la emergencia de adultos. Cuantificándose todo el material biológico después de 18 días.

Análisis de Datos

Los datos de mortalidad larval fueron transformados a logaritmos naturales y posteriormente sometidos a un análisis de varianza (ANOVA) (SAS Institute, 2003). La separación de medias se realizó mediante la prueba de Tukey ($P > 0.05$) (SAS Institute, 2003).

Las curvas que describen el proceso de calentamiento de los frutos en el equipo experimental y comercial fueron comparadas por el método de Log-Rank. Todos los análisis se realizaron con el software JMP Statistical Discovery Software (SAS Institute, 2003).

RESULTADOS

Prueba de Laboratorio

La prueba de laboratorio para determinar la mortalidad de la larva de tercer estadio tardío de A.
Hernández Emilio et al.: Mortalidad de larvas de *Anastrepha ludens*

Cuadro 1.

Mortalidad de la larva de *Anastrepha ludens* en mangos infestados artificialmente y tratados en agua caliente e inmediatamente enfriados en agua a temperatura ambiente a 21° en condiciones experimentales.

<table>
<thead>
<tr>
<th>Mango</th>
<th>Peso (g)</th>
<th>Tiempo (min.)</th>
<th>Peso (g)</th>
<th>Mortalidad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>Media±EE</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>375</td>
<td>55</td>
<td>301.00</td>
<td>337.5±2.7</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>375</td>
<td>65</td>
<td>301.03</td>
<td>332.7±3.1</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>375</td>
<td>75</td>
<td>355.20</td>
<td>383.2±1.5</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>375</td>
<td>85</td>
<td>350.10</td>
<td>372.0±1.6</td>
</tr>
<tr>
<td>Keitt</td>
<td>570</td>
<td>65</td>
<td>520.10</td>
<td>551.9±2.7</td>
</tr>
<tr>
<td>Keitt</td>
<td>570</td>
<td>75</td>
<td>513.73</td>
<td>553.1±2.5</td>
</tr>
<tr>
<td>Keitt</td>
<td>500</td>
<td>65</td>
<td>475.20</td>
<td>495.1±1.7</td>
</tr>
<tr>
<td>Keitt</td>
<td>500</td>
<td>75</td>
<td>475.20</td>
<td>496.8±1.7</td>
</tr>
<tr>
<td>Keitt</td>
<td>500</td>
<td>85</td>
<td>480.10</td>
<td>494.4±1.2</td>
</tr>
<tr>
<td>Keitt</td>
<td>500</td>
<td>95</td>
<td>476.30</td>
<td>496.1±1.5</td>
</tr>
<tr>
<td>Keitt</td>
<td>700</td>
<td>80</td>
<td>674.30</td>
<td>693.9±1.5</td>
</tr>
<tr>
<td>Keitt</td>
<td>700</td>
<td>90</td>
<td>675.30</td>
<td>699.3±1.1</td>
</tr>
<tr>
<td>Keitt</td>
<td>700</td>
<td>100</td>
<td>675.00</td>
<td>690.2±1.1</td>
</tr>
<tr>
<td>Keitt</td>
<td>700</td>
<td>110</td>
<td>676.00</td>
<td>697.2±1.2</td>
</tr>
</tbody>
</table>

Número de frutos por tratamiento = 70. Número de larvas por agujero = 25. Agujeros por fruto = 2. Larvas por fruto = 50. Valores diferente letra son significativamente diferentes (P=0.5).
Cuadro 2.
Temperaturas (°C) durante el tratamiento en agua caliente y enfriado en agua de frutos infestados con larvas de *Anastrepha ludens* en condiciones experimentales.

<table>
<thead>
<tr>
<th></th>
<th>Temperatura inicial (°C)</th>
<th>Temperatura (°C) al final del tratamiento</th>
<th>Temperatura (°C) al final del hidroenfriado</th>
<th>Tiempo de hidroenfriado (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulpa</td>
<td>Agua</td>
<td>Pulpa</td>
<td>Agua</td>
</tr>
<tr>
<td>Ataulfo 375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 min.</td>
<td>26.3±0.2</td>
<td>45.7±0.2</td>
<td>43.5±0.1</td>
<td>46.0±0.1</td>
</tr>
<tr>
<td>65 min.</td>
<td>26.6±0.1</td>
<td>45.4±0.7</td>
<td>44.5±0.1</td>
<td>46.0±0.1</td>
</tr>
<tr>
<td>75 min.</td>
<td>24.5±0.8</td>
<td>45.3±0.8</td>
<td>44.5±0.3</td>
<td>46.0±0.1</td>
</tr>
<tr>
<td>85 min.</td>
<td>24.8±0.2</td>
<td>45.4±0.1</td>
<td>45.2±0.1</td>
<td>46.1±0.1</td>
</tr>
<tr>
<td>Ataulfo 570</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 min.</td>
<td>23.4±0.2</td>
<td>45.3±0.2</td>
<td>41.9±0.1</td>
<td>45.9±0.1</td>
</tr>
<tr>
<td>75 min.</td>
<td>24.2±0.3</td>
<td>45.3±0.2</td>
<td>40.4±0.1</td>
<td>45.7±0.1</td>
</tr>
<tr>
<td>Keitt 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 min.</td>
<td>21.7±0.8</td>
<td>45.7±0.6</td>
<td>42.5±0.1</td>
<td>46.1±0.3</td>
</tr>
<tr>
<td>75 min.</td>
<td>24.7±0.1</td>
<td>45.5±0.9</td>
<td>43.7±0.9</td>
<td>46.1±0.1</td>
</tr>
<tr>
<td>85 min.</td>
<td>32.5±0.1</td>
<td>45.6±0.1</td>
<td>44.8±0.1</td>
<td>46.1±0.1</td>
</tr>
<tr>
<td>95 min.</td>
<td>22.9±0.1</td>
<td>45.5±0.1</td>
<td>45.1±0.1</td>
<td>46.2±0.1</td>
</tr>
<tr>
<td>Keitt 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 min.</td>
<td>24.6±0.1</td>
<td>45.2±0.2</td>
<td>42.7±0.1</td>
<td>46.1±0.1</td>
</tr>
<tr>
<td>90 min.</td>
<td>23.7±0.1</td>
<td>45.4±0.7</td>
<td>43.9±0.4</td>
<td>46.0±0.1</td>
</tr>
</tbody>
</table>

El tiempo de enfriado fue de 30 minutos en todos los casos. La temperatura de la pulpa nunca fue menor a 45 °C, con lo que se cumplió con los requisitos de tratamiento establecido en el “Work Plan for the Mexican Mango Treatment and Preclearance Program for the 2001” (Cuadro 4). La temperatura de la pulpa al final del proceso tanto de las pruebas de laboratorio como de la confirmatoria fue mayor a 32.2 °C para mangos Cv. “Keitt”, mientras que para mangos Cv. “Ataulfo” de 570 g de peso fue mayor a los 31.7 °C, en ambos experimentos.

Cabe hacer mención que la temperatura del agua caliente para el tratamiento comercial en todos los casos fue mayor que la del tratamiento experimental como consecuencia de las características propias del equipo (Fig. 1).

Las curvas que describieron el calentamiento de los frutos durante los tratamientos experimentales

Cuadro 3.
Mortalidad de la larva de *Anastrepha ludens* en mangos infestados artificialmente y tratados en agua caliente e inmediatamente enfriados en agua a temperatura ambiente a 21° en condiciones comerciales.

<table>
<thead>
<tr>
<th>Mango cv.</th>
<th>Tiempo de tratamiento (min.)</th>
<th>Peso (g)</th>
<th>Mortalidad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mín</td>
<td>Media±E.E.</td>
<td>Máx</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>65</td>
<td>300</td>
<td>355.9±3.4</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>75</td>
<td>400</td>
<td>487.4±0.8</td>
</tr>
<tr>
<td>Keitt</td>
<td>85</td>
<td>400</td>
<td>455.6±3.5</td>
</tr>
<tr>
<td>Keitt</td>
<td>100</td>
<td>506</td>
<td>646.5±4.6</td>
</tr>
</tbody>
</table>

Ataulfo 375 g.- 2000 mangos infestados con 100,000 larvas.
Ataulfo 570 g.- 1565 mangos infestados con 78,250 larvas.
Keitt 500 g.- 1480 mangos infestados con 74,000 larvas.
Keitt 700 g.- 1500 mangos infestados con 75,000 larvas.
presentaron diferencias significativas en mangos Cv. “Ataulfo” de 375 g de peso (Log-Rank, \(c^2 = 334.60\), g.l. = 1, \(P < 0.001\)), para mangos Cv. “Ataulfo” de 570 g de peso (Log-Rank, \(c^2 = 1177.85\), g.l. = 1, \(P < 0.001\)), y para mangos Cv. “Keitt” de 500 g de peso (Log-Rank, \(c^2 = 532.25\), g.l. = 1, \(P < 0.001\)). La pulpa de mangos Cv. “Ataulfo” de 375 g de peso estuvo sometida a 43.3 °C por 30 minutos, mientras que los de 570 g de peso y mangos Cv. “Keitt” de 500 g de peso estuvieron sometidos a 43.3 °C por 40 minutos (Fig. 1).

Al inicio de los tratamientos, la temperatura del agua fue de 45.2 °C en el equipo experimental (Cuadro 1); mientras que en el equipo comercial fue de 47.1 °C (Cuadro 4). La temperatura mínima de los frutos al inicio de los tratamientos de la fase experimental fue de 21.7 °C, a diferencia de lo que sucedió durante la aplicación de los tratamientos comerciales, en los cuales los frutos se mantuvieron a una temperatura de 28.4 °C. En la fase experimental, la temperatura promedio de la pulpa al final de la inmersión en agua caliente y a la cual se obtuvo 100% de mortalidad larval fue de 44.5 °C en mangos Cv. “Ataulfo” de 375 g de peso, 40.4 °C en mangos Cv. “Ataulfo” de 570 g de peso, 44.8 °C en mangos Cv. “Keitt” de 500 g de peso, y de 44.9 °C en mangos Cv. “Keitt” de 700 g de peso tratados durante 65, 75, 85 y 100 minutos, respectivamente (Cuadro 2).

En la fase realizada a escala comercial, la temperatura promedio de la pulpa de los mangos cuando se observó 100% de mortalidad larval fue de 45.2, 45.3, 45.3, 45.4 °C para mangos Cv. “Ataulfo” de 375 y 570 g de peso, y para mangos Cv. “Keitt” de 500 y 700 g de peso, respectivamente (Cuadros 3 y 4).

La mortalidad larvaria observada en el testigo fue muy baja (2.3%, \(N = 50,000\) larvas observadas) (Cuadro 5).

DISCUSIÓN

Los datos de este trabajo para mangos Cv. “Keitt” indicaron que el enfriado inmediato de los frutos tratados por inmersión en agua disminuye la efectividad del tratamiento de inmersión en agua caliente. Estos resultados coincidieron con lo observado por Shellie y Mangan (2001), quienes determinaron que cuando el enfriado en agua es utilizado para mangos de 687 ± 2 g de peso y de 707 ± 6 g de peso tratados con agua caliente, puede ocurrir una supervivencia del 2%. Como fue el caso reportado con los mangos Cv. “Francis” infestados con larvas de tercer estadio de A. suspensa, tratados por inmersión en agua caliente a 46.1 °C y enfriados...
FIGURA 1. Temperatura del mango durante el tratamiento con agua caliente y enfriado en agua. (--) tratamiento comercial, (---) tratamiento en equipo experimental. Temperatura en el centro del fruto de mango; (A) Ataulfo de 375 g de peso tratado durante 65 minutos, (B) Ataulfo de 570 g tratado durante 75 minutos, y (C) Keitt de 500 g tratado durante 85 minutos.
Cuadro 5.

<table>
<thead>
<tr>
<th>Mango</th>
<th>Control para el tratamiento</th>
<th>Supervivencia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso(g)</td>
<td>Prueba de laboratorio</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>55</td>
<td>96.50±0.10</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>96.20±1.20</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>94.80±1.60</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>96.20±1.60</td>
</tr>
<tr>
<td>Ataulfo</td>
<td>65</td>
<td>95.70±0.70</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>95.80±2.00</td>
</tr>
<tr>
<td>Keitt</td>
<td>65</td>
<td>97.40±2.20</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>97.70±0.30</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>95.40±3.40</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>95.50±1.50</td>
</tr>
<tr>
<td>Keitt</td>
<td>80</td>
<td>96.80±1.20</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>97.50±0.90</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>96.80±0.20</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>97.10±1.30</td>
</tr>
</tbody>
</table>

En las pruebas de laboratorio se utilizaron 1000 larvas distribuidas en 20 frutos por cada tratamiento. En las pruebas confirmatorias se utilizaron 2500 larvas distribuidas en 50 frutos por cada tratamiento.

La cual dependió de la capacidad del equipo para la cantidad de fruta que se puede tratar (Thomas y Shellie, 2000). Los equipos experimentales con tanque con una capacidad de 700 litros (36 x 36 x 36") (Shellie y Mangan, 2000 y 2001), solo tienen capacidad para 70 frutos distribuidos en tres cajas. En contraste los equipos comerciales tienen capacidad para 160 cajas, con un promedio de 30 frutos por caja, lo que implica que aunque ambos equipos tienen una precisión ±0.1 °C, en el comercial para que el fruto alcance los 45 °C, el agua debe estar a 47.1 °C, mientras que en el experimento se alcanza a los 45.2 °C, tal diferencia resulta en que la curva que describe el calentamiento de la pulpa sea mayor en los frutos tratados en los equipos comerciales.

Se ha establecido que los frutos no deben exceder el tamaño determinado por categoría, ya que en frutos tratados durante 65 y 75 minutos que excedan 70 g de su peso promedio permitido, se han observado larvas vivas independientemente del método de enfriado que se utilice (Shellie y Mangan, 2000). En nuestros resultados en todas las categorías de tamaño se obtuvo el 100% de mortalidad larval a excepción de los mangos Cv. “Ataulfo” de 375 g de peso tratados con 65 minutos, en donde el tamaño de los frutos no excedió de 25 g el peso promedio permitido.

En el “Work Plan for the Mexican Mango Treatment and Pre-clearance Program for the 2001” (USDA/SAGARPA, 2001) está establecido que al final del tratamiento, la temperatura promedio de la pulpa no debe ser menor de 45 °C y la diferencia máxima entre la temperatura menor y mayor no debe exceder de 3.0 °C. Este requerimiento se cumplió en los tratamientos con mangos Cv. “Ataulfo” de 375 g de peso durante 85 minutos y para mangos Cv. “Keitt” de 500 g de peso por 95 minutos. En el caso de los mangos Cv. “Ataulfo” de 570 g de peso y mangos Cv. “Keitt” de 700 g de peso no se alcanzó la temperatura requerida, aunque se obtuvo 100% de mortalidad de larvas. En frutos de ambas variedades se registraron los

En agua, la mortalidad larval fue menor de 100% (Hallman y Sharp, 1990).

En este trabajo para los mangos Cv. “Keitt” de 700 ± 9.5 g de peso se obtuvo una mortalidad del 97.37%. Mientras que para los mangos de la misma variedad de 500 ± 14.4 g de peso la mortalidad obtenida fue del 99.97%, a diferencia de lo reportado por Shellie y Mangan (2000) quienes en todos los casos obtuvieron una supervivencia de 0.4% para mangos Cv. “Keitt” de 494 ± 10 g de peso tratados por 75 minutos.

Las diferencias en las curvas que describen la temperatura en la pulpa durante la aplicación de los tratamientos en el equipo experimental y comercial se debieron a la temperatura del agua,
mayores tiempos de enfriado para disminuir la temperatura de la pulpa hasta 32.2 °C, este hecho indicó que la temperatura en los frutos de mayor peso se pierde en forma más lenta y el efecto sobre la viabilidad de las larvas fue mayor provocando la mortalidad de las mismas.

La temperatura mínima del agua al inicio de cada tratamiento fue 47.1 °C, y al final del proceso fue 46.3 °C, con lo cual se obtuvo que el fruto registrara al final del tratamiento una temperatura de 46.1 °C. Durante las pruebas confirmatorias en todos los casos el mango estuvo sometido a 43.3 °C durante 30 minutos, condiciones en las cuales el mango no sufre daño (Sharp et al., 1989; Shellie y Mangan, 2000, 2001; Mangan y Shellie, 2003).

En este trabajo no se realizaron pruebas sobre el efecto del tratamiento en la calidad de la fruta dado que ya se determinó que los frutos pueden soportar un tratamiento hasta por 110 minutos a 46.1 °C, sin que se registre algún detrimento de la misma (Shellie y Mangan, 2001; Mangan y Shellie, 2003), y puede uniformizar el color interno y externo de los frutos tratados (Osuna García et al., 2002).

En conclusión, para alcanzar el 100% de mortalidad larvaria y mejorar la calidad de la fruta tratada, los mangos Cv. “Ataulfo” con 375 y 570 g un peso, y los mangos Cv. “Keitt” con 500 y 700 g de peso e infestados con larvas del tercer estadio tardío requieren de un tratamiento en agua caliente de 46.1 °C durante 65, 75, 85 y 100 minutos, respectivamente. Así mismo, un proceso de enfriamiento al menos de 30 minutos en agua cuya temperatura sea de 23-25 °C.

AGRADECIMIENTOS
A José Manuel Gutiérrez Ruelas, Director de la Campaña Nacional contra Moscas de la Fruta, y Antonio Villaseñor, Director del Programa Moscamed, por el apoyo brindado a este trabajo. A Yvette Pérez, Andrés Carballo, Vidal Olivo y Jorge Rodríguez (USDA-APHIS, Guadalajara, Jal., México), a Julia de León y Roberto Rivas (USDA-ARS, Weslaco, TX, USA), a Jaime López Cuadras y Rosy Pérez Nieves (EMEX, A.C.), a José Castrezana, Felipa Socorro Ramírez y Roberto Almazán (AMEX, S.A. de C.V.), a Pamela Moreno (USDA-APHIS, Reynosa Tamps.) y el apoyo técnico de Trinidad Artiaga, Salvador Flores, Bigail Bravo, Orlando Estrada, Orlando Rivera, Dielman Mejía y Margoth García (Subdirección de Desarrollo de Métodos, Programa Moscamed-Moscafruit, SAGARPA).

LITRATURA CITADA

Hernández Emilio et al.: Mortalidad de larvas de Anastrepha ludens

